COLUMBIA MIDDLE SCHOOL TECHNOLOGY EDUCATION

Design Challenge

Curriculum Guide

Date: September 2018
Updated: September 2019

Dr. Melissa Varley, Superintendent
Mr. Scott McKinney, Assistant Superintendent
Mr. Andrew Ziobro, District Supervisor

Developed by: Peter Festante

This curriculum may be modified through varying techniques, strategies, and materials, as per an individual student’s Individualized Educational Plan (IEP)

Approved by the Berkeley Heights Board of Education at the regular meeting held on 12/5/19.
VISION STATEMENT

STEM is the integrated approach to education in the areas of Science, Technology, Engineering, and Mathematics. Instruction is student centered and driven by an iterative design process, exploratory learning, problem-solving, and engagement in authentic contexts.

Through the process of engaging in authentic, hands-on, open-ended design challenges, students will become familiar with the steps and processes associated with successful problem solving in the context of the engineering design process. Students will gain proficiency in the application of relevant Math, Science, and Technology concepts while expanding their comprehension and understanding of the human-designed world, the nature of technology and engineered systems, and the skills, knowledge, and attitudes necessary to become well-rounded and successful twenty-first century problem solvers and innovators.
MISSION STATEMENT

Design challenge is a one quarter cycle class designed for 7th and 8th grade students at Columbia Middle school that addresses 21st century skills and career ready practices. Students utilize the engineering design process and are given the opportunity to utilize this process. Throughout the course, students will be engaged in an authentic problem-based learning environment working as a team and serving in different engineering roles. Students will learn to utilize feedback from this process to revise their designs and develop better solutions. This course continues to build the skills and knowledge developed in the iSTEM course which builds the foundational knowledge needed to solve real world problems across different areas of study and outside the classroom.
COURSE PROFICIENCIES

COURSE OBJECTIVES

The engineering design process is a loop because although the steps are listed in sequential order, you will likely return to previous steps multiple times throughout a project. It is often necessary to revisit stages or steps in order to improve that aspect of a project.

In the engineering design process, engineers...

- Ask (What are we trying to solve?, What are the constraints?, What are the requirements?, What questions do you have about the challenge?)
- Imagine (What are the possible solutions?, Brainstorm ideas, list materials needed, explain the ideas, create a sketch for you ideas)
- Plan (Choose a final solution, sketch a final solution, decide the steps you will take to create your solution, create a technical drawing to explain your design)
- Create (follow your plan and create your design, what changes did you make while creating your design? Why?, Self reflection)
- Improve (What worked well? What could have gone better? What improvements could you make to allow your design to be more successful? Why is the redesign better than the original design?)

Career Ready Practices

CRP1. Act as a responsible and contributing citizen and employee.
CRP2. Apply appropriate academic and technical skills.
CRP4. Communicate clearly and effectively and with reason.
CRP5. Consider the environmental, social and economic impacts of decisions.
CRP6. Demonstrate creativity and innovation.
CRP7. Employ valid and reliable research strategies.
CRP8. Utilize critical thinking to make sense of problems and persevere in solving them.
CRP9. Model integrity, ethical leadership and effective management.
CRP11. Use technology to enhance productivity.
CRP12. Work productively in teams while using cultural global competence.
STUDENT PROFICIENCIES

Students will understand:

● How to engage in questioning techniques
● The importance of labeled sketches in engineering design
● How to employ various brainstorming techniques
● When to use orthographic drawings (multi-view drawings)
● Various ways to engage in prototyping
● How to use iterative design techniques to improve the function of a design
● The basics of microcontrollers and how software effects design
METHODS OF EVALUATION

1. Teacher observation/questioning/monitoring
2. Engineering Notebooks/Journals
3. Team evaluation rubrics
4. Self and peer evaluation
5. Performance tasks/assessments
6. Reports and presentations
7. Student created designs and models
MODIFICATIONS & ACCOMMODATIONS

Modifications and Accommodations for Special Education students, students with 504s, English Language Learners and Gifted and Talented students may include but are not limited to the following:

Special Education

- Individualized Education Plans (IEPs)
- Exemplars of varied performance levels
- Multimedia presentations
- Sheltered instruction
- Consultation with ESL teachers
- Manipulatives
- Tiered/Scaffolded Lessons
- Mnemonic devices
- Visual aids
- Modeling
- Guided note-taking
- Study Guides
- Modified homework
- Differentiated pre-typed class notes and example problems
- Use of the special education teacher to re-instruct in flexible small groups for the struggling learner
- Manipulatives
- Flipped Instruction
- Word banks
- Reduced choice on assessments
- Preferential seating
- Choice activities
- Modified time requirements
- Modified notes
- Modified lesson, assessment and study guide format
- Provide an enriched curriculum and activities
- Independent projects
- Contracts/behavior support plans
- Open-ended responses
- Project-based learning
- Group activities
• Guided Notes
• Functional learning incorporated into each lesson
• Exploration Activities
• Assessment read aloud
• Small group assessments
• Organizational Support
• Oral questioning assessments to supplement written response
• Pre-writing Structural Supports for extended writing tasks
• Ongoing teacher feedback as part of the writing process
• Interactive Study Guides
• Multi-sensory approach to instruction
• Written and spoken step-by-step directions
• Content-focused assessment (not grading for spelling/grammar)
• Graphic organizers
• Non-verbal cues to begin task/remain on task/refocus
• Individual monitoring for understanding/reinforced instruction
• Printed copies of class readings for application of Active Reading Strategies

Gifted & Talented

• Provide one-to-one teacher support
• Curriculum Compacting
• Advanced problems to extend the critical thinking skills of the advanced learner
• Supplemental reading material for independent study
• Elevated questioning techniques using Webb’s Depth of Knowledge matrix
• Curriculum Compacting
• Flexible grouping
• Tiered assignments
• Topic selection by interest
• Manipulatives
• Tiered Lessons
• Flipped Instruction
• Multimedia Presentations
• Open-ended responses
• Project-based learning
• Group activities
• Guided Notes
• Conclusions and analysis of exploratory activities
• Career based learning incorporated into each lesson
• Exploration Activities
● Student choice

ELL’s
- Exemplars of varied performance levels
- Multimedia presentations
- Sheltered instruction
- Consultation with ESL teachers
- Manipulatives
- Tiered/Scaffolded Lessons
- Mnemonic devices
- Visual aids
- Modeling
- Guided note-taking
- Study Guides
- Modified homework
- Differentiated pre-typed class notes and example problems
- Individualized instruction plans
- Manipulatives
- Flipped Instruction
- Words banks
- Reduced choice on assessments
- Preferential seating
- Choice activities
- Modified time requirements
- Modified notes
- Modify lesson, assessment and study guide format
- Provide an enriched curriculum and activities
- Contracts/management plans
- Open-ended responses
- Project-based learning
- Group activities
- Guided Notes
- Exploration Activities
- Assessment read aloud
- Small group assessments
- Oral questioning assessments to supplement written response
- Pre-writing Structural Supports for extended writing tasks
- Ongoing teacher feedback as part of the writing process
- Interactive Study Guides
- Multi-sensory approach to instruction
• Written and spoken step-by-step directions
• Graphic organizers
• Non-verbal cues to begin task/remain on task/refocus
• Individual monitoring for understanding/reinforced instruction
• Printed copies of class readings for application of Active Reading Strategies

504’s
• Exemplars of varied performance levels
• Multimedia presentations
• Sheltered instruction
• Tiered/Scaffolded Lessons
• Mnemonic devices
• Visual aids
• Modeling
• Guided note-taking
• Study Guides
• Differentiated pre-typed class notes and example problems
• Manipulatives
• Words banks
• Reduced choice on assessments
• Preferential seating
• Modified time requirements
• Modified notes
• Modify lesson, assessment and study guide format
• Modified homework
• Independent projects
• Contracts/management plans
• Open-ended responses
• Project-based learning
• Group activities
• Guided Notes
• Exploration Activities
• Assessment read aloud
• Small group assessments
• Organizational Support
• Oral questioning assessments to supplement written response
• Pre-writing Structural Supports for extended writing tasks
• Ongoing teacher feedback as part of the writing process
• Interactive Study Guides
• Multi-sensory approach to instruction
• Written and spoken step-by-step directions
• Content-focused assessment (not grading for spelling/grammar)
• Graphic organizers
• Non-verbal cues to begin task/remain on task/refocus
- Individual monitoring for understanding/reinforced instruction
- Printed copies of class readings for application of Active Reading Strategies

Students at Risk of Failure
- Exemplars of varied performance levels
- Multimedia presentations
- Tiered/Scaffolded Lessons
- Modeling
- Guided note-taking
- Study Guides
- Differentiated pre-typed class notes and example problems
- Individualized instruction plans
- Words banks
- Reduced choice on assessments
- Preferential seating
- Choice activities
- Modified time requirements
- Modified notes
- Modified lesson, assessment and study guide format
- Modified homework
- Provide an enriched curriculum and activities
- Contracts/management plans
- Open-ended responses
- Project-based learning
- Group activities
- Guided Notes
- Exploration Activities
- Assessment read aloud
- Small group assessments
- Oral questioning assessments to supplement written response
- Pre-writing Structural Supports for extended writing tasks
- Ongoing teacher feedback as part of the writing process
- Interactive Study Guides
- Multi-sensory approach to instruction
- Written and spoken step-by-step directions
- Graphic organizers
- Non-verbal cues to begin task/remain on task/refocus
- Individual monitoring for understanding/reinforced instruction
- Printed copies of class readings for application of Active Reading Strategies

Modifications have been added in 2019, curriculum will be edited completely on revision
Unit 1: Design Challenge Review
Duration: 5 days

Overview: Students will review the engineering of the design process and utilize this process to solve problems.

Technology: 8.1.8.A,B,E,F; 8.2.A,B,C,D

21st Century: CRP1,2,4,5,6,7,8,9,11,12

Cross-Curricular Connections: RST.6-8.3; RST.6-8.4; RST.6-8.7; MP1,2,3,4,5

Essential Questions:
- How does the engineering design process impact the design of products and solutions?
- Why is the engineering design process a loop and not linear?

Students Learning Objectives
- Students will know the steps of the engineering design process.
- Students will know science principles drive the creation and evolution of technology.
- Students will be able to understand the differences and interconnectedness between science and technology.
- Students will begin to examine the engineering design process through discussions and real-life examples.
- Students will apply the design process to understand product evolution.
- Students will implement the information about the evolution of technology so far, to predict how the future might look.

Possible Activities:
- Identify and explain the steps of the engineering design process.
- Compare and contrast Science and Technology
- What is technology? - Class Discussion
- Science vs. Technology - Identify the science behind different technologies
- Understanding the steps of the Engineering Design Process and how it works as a loop through analyzing real world problems
- Compare present-day technology to the technology of the past to determine how the engineering design process affects the evolution of technology.
Unit 2: Improving Iterative Design Skills
Duration: 15-20 days

Overview: Students will complete design challenges and then need to modify the designs to meet new requirements. Students will create and test several iterative designs using skills and tools that can be used to communicate their ideas and solutions such as developing orthographic drawings and 3D models. This unit will build on the skills developed in the iSTEM course and allow students to deeply explore the iterative process.

Technology: 8.1.8.A,B,E,F; 8.2.A,B,C,D

21st Century: CRP1,2,4,5,6,7,8,9,11,12

Cross-Curricular Connections: RST.6-8.3; RST.6-8.4; RST.6-8.7; MP1,2,3,4,5

Essential Questions:
- How do prototypes effect final design decisions?
- Why do companies revise their designs?
- How are skills utilized to meet the goals of the design process?

Students Learning Objectives:

Students will know...
- How to identify new or hidden requirements.
- How to research information that will guide their development of ideas.
 - How to use brainstorming techniques to think outside of the box.

Students will be able to...
- Create and evaluate several prototypes
- Think outside the box while brainstorming
- Apply their knowledge of the Engineering Design Process to complete a design challenge.
- Represent their ideas using technical drawing skills.
- Follow safety rules while working with tools.
- Understand how an object is displayed and represented in an orthographic drawing.

Possible Activities:
- Mousetrap racers with redesign challenge
- Rocket design and redesign challenge
- Scratch design challenge where students are given basic components and need to complete a complex design
- Practice and utilize a variety of different types of strategies and approaches for sketching and drawing
- Engage in brainstorming activities to generate multiple solutions to problems
- Communicate multiple design solutions for a unit-specific design challenge
- Demonstrate proper safety procedures when using tools to assist in design
- Students will demonstrate how to use science (apply scientific principles) to design technology (engage in engineering).
Unit 3: Microcontrollers in Engineering Design Solutions
Duration: 15-20 days

Overview: Students will utilize microcontrollers to complete complex design challenges. Students will design solutions with hardware and software components that interact with the real world. Students will develop algorithms to help complete the challenge.

Technology: 8.1.8.A,B,E,F; 8.2.A,B,C,D

21st Century: CRP1,2,4,5,6,7,8,9,11,12

Cross-Curricular Connections: RST.6-8.3; RST.6-8.4; RST.6-8.7; MP1,2,3,4,5

Essential Questions:
- What is an algorithm?
- How does software affect design?
- How is software design different from hardware design?

Students Learning Objectives:
Students will know...
- How to define and create software algorithms
- How to research information that will guide their development of ideas.
- How to use brainstorming techniques to think outside of the box.

Students will be able to...
- Apply their knowledge of the Engineering Design Process by completing design challenges.

Possible Activities:
- Microbit smarthome challenge
- IOT product development
- Engage in brainstorming activities to generate multiple solutions to problems.
- Identify the most appropriate way to communicate your most innovative idea.
- Reflect on the final product to improve a design.
- Demonstrate proper safety procedures when using tools to assist in design.
- Students will use the steps of the Engineering Design Process to complete design challenges (examples of design challenges are bridge design, aid drops, etc.)
- Students will demonstrate how to use science (apply scientific principles) to design technology (engage in engineering).

SUGGESTED MATERIALS
Resources for Students
- microbit controllers
- Lego kits
- Glue Guns, Glue
- Balsa wood
- Paper
- 3D Printer and Printed Parts
- Tape/Duck Tape
- Balloons
- Straws
- Paper Clips
- Wood skewers
- CD’s
- Rubber Bands
- String, Thread
- Screws
- Sketch design tools on iPad
- OneNote
- iPad apps and peripherals
- Discovery Channel’s Mythbusters
- http://video.mit.edu/
- Computer Interface probes
- Force, Pressure and temperature sensors

Resources for Teacher

https://insidetheclassroomoutsidethebox.wordpress.com/2014/07/13/design-thinking-and-challenges/

https://designtinkingforeducators.com/

https://www.pinterest.com/pin/308355905708355267/

http://pbskids.org/designsququad/parentseducators/resources/index.html?type=activity

http://centerforstem.tcnj.edu/istem-home/resources/

https://microbit.org/