1. Chaz kept a record of how many gallons of gas he purchased each day last week.

<table>
<thead>
<tr>
<th>Day</th>
<th>Gas (in gallons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>4.5</td>
</tr>
<tr>
<td>Tuesday</td>
<td>3.9</td>
</tr>
<tr>
<td>Wednesday</td>
<td>4.258</td>
</tr>
<tr>
<td>Thursday</td>
<td>3.75</td>
</tr>
<tr>
<td>Friday</td>
<td>4.256</td>
</tr>
</tbody>
</table>

Order the days from least amount of gas Chaz purchased to greatest amount of gas Chaz purchased.

Least Greatest

2. For 2a–2c, select True or False for each statement.

2a. 16.437 rounded to the nearest whole number is 16.
 True False

2b. 16.437 rounded to the nearest tenth is 16.4.
 True False

2c. 16.437 rounded to the nearest hundredth is 16.43.
 True False

3. Students are selling muffins at a school bake sale.
 One muffin costs $0.25, 2 muffins cost $0.37, 3 muffins cost $0.49, and 4 muffins cost $0.61. If this pattern continues, how much will 7 muffins cost? Explain how you found your answer.

 I looked for a pattern in the costs which I found to be add $.12. I added $.12 three times to $.61 to get to 7 muffins. The cost for 7 muffins is $.97.
4. What is the value of the underlined digit? Mark all that apply.

0.679
- 0.6 ○ six hundredths
- 0.06 ○ \(6 \times \frac{1}{10}\)
- six tenths

5. Rowanda jogged 2.14 kilometers farther than Terrance. Select the values that could represent how far each student jogged. Mark all that apply.

- Rowanda: 6.5 km, Terrance: 4.36 km
- Rowanda: 4.8 km, Terrance: 2.76 km
- Rowanda: 3.51 km, Terrance: 5.65 km
- Rowanda: 7.24 km, Terrance: 5.1 km

6. Shade the model to show the decimal 0.542.

7. Benjamin rode his bicycle 3.6 miles on Saturday and 4.85 miles on Sunday. How many miles did he ride Saturday and Sunday combined? Use the digits on the tiles to solve the problem. Digits may be used more than once or not at all.

\[
\begin{array}{c}
4.85 \\
+ 3.60 \\
\hline
8.45
\end{array}
\]
8. The school is 3.65 miles from Tonya's house and 1.28 miles from Jamal's house. How much farther from school is Tonya's house than Jamal's house? Explain how you can use a quick picture to solve the problem.

I can draw 3.65 miles using 3 flats for ones, 6 rods for tenths and 5 cubes for hundredths. I can regroup 1 rod for 10 cubes (hundredths). Then I would subtract 3 hundredths (cubes) from 15 hundredths (cubes). Then I would subtract 2 tenths (rods) from 5 tenths (rods). Then I would subtract 1 flat from 3 flats.

9. A vet measured the mass of two birds. The mass of the robin was 76.64 grams. The mass of the blue jay was 81.54 grams. Estimate the difference in the masses of the birds.

5 grams

10. Rick bought 5 yogurt bars at a snack shop. Each yogurt bar cost $1.75. Complete the table to show the price of 2, 3, 4, and 5 yogurt bars.

<table>
<thead>
<tr>
<th>Number of Yogurt Bars</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$1.75</td>
</tr>
<tr>
<td>2</td>
<td>$3.50</td>
</tr>
<tr>
<td>3</td>
<td>$5.25</td>
</tr>
<tr>
<td>4</td>
<td>$7.00</td>
</tr>
<tr>
<td>5</td>
<td>$8.75</td>
</tr>
</tbody>
</table>

11. Clayton Road is 2.25 miles long. Wood Pike Road is 1.8 miles long. Kisha used a quick picture to find the combined length of Clayton Road and Wood Pike Road. Does Kisha's work make sense? Explain why or why not.

Yes Kisha's work makes sense because she regrouped 10 rods and made it one flat (whole).
12. Bob and Ling are playing a number pattern game. Bob wrote the following sequence.

\[28.9, 26.8, 24.7, \underline{}, 20.5\]

What is the unknown term in the sequence?

\[22.6\]

13. Rafael bought 2.15 pounds of potato salad and 4.2 pounds of macaroni salad to bring to a picnic. For 13a–13c, select Yes or No to indicate whether each statement is true.

13a. Rounded to the nearest whole number, Rafael bought 2 pounds of potato salad.

\[\text{Yes} \quad \text{No}\]

13b. Rounded to the nearest whole number, Rafael bought 4 pounds of macaroni salad.

\[\text{Yes} \quad \text{No}\]

13c. Rounded to the nearest tenth, Rafael bought 2.1 pounds of potato salad.

\[\text{Yes} \quad \text{No}\]

14. The four highest scores on the floor exercise at a gymnastics meet were 9.675, 9.25, 9.325, and 9.5 points. Choose the numbers that make the statement true.

The lowest of these four scores was \[\underline{9.25}\] points. The highest of these four scores was \[\underline{9.675}\] points.
15. Michelle records the value of one euro in U.S. dollars each day for her social studies project. The table shows the data she has recorded so far.

<table>
<thead>
<tr>
<th>Day</th>
<th>Value of 1 Euro (in U.S. dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>1.448</td>
</tr>
<tr>
<td>Tuesday</td>
<td>1.443</td>
</tr>
<tr>
<td>Wednesday</td>
<td>1.452</td>
</tr>
<tr>
<td>Thursday</td>
<td>1.458</td>
</tr>
</tbody>
</table>

On which two days was the value of 1 euro the same when rounded to the nearest hundredth of a dollar?

Monday and Wednesday

16. Miguel has $20. He spends $7.25 on a movie ticket, $3.95 for snacks, and $1.75 for bus fare each way. How much money does Miguel have left?

$ 5.30

17. **GO DEEPER** Yolanda’s sunflower plant was 64.34 centimeters tall in July. During August, the plant grew 18.2 centimeters.

Part A

Estimate the height of Yolanda’s plant at the end of August by rounding each value to the nearest whole number. Will your estimate be less than or greater than the actual height? Explain your reasoning.

82 cm. The estimate would be less than the actual height because both numbers were rounded down.

Part B

What was the exact height of the plant at the end of August? Was the estimate less than or greater than the exact value?

82.54 cm less than the exact answer.
18. Oscar ran the 100-yard dash in 12.41 seconds. Jesiah ran the 100-yard dash in 11.85 seconds. How many seconds faster was Jesiah's time than Oscar's time?

 \[\frac{56}{100} \text{ second(s)} \]

19. Choose the value that makes the statement true.

In the number 1.025, the value of the digit 2 is \(\text{hundredths} \), and the value of the digit 5 is \(\text{thousandths} \).

20. Troy and Lazetta are solving the following word problem.

Rosalie's cat weighs 9.8 pounds. Her dog weighs 25.4 pounds. What is the weight of both animals combined?

Troy sets up his problem as 9.8 + 25.4. Lazetta sets up her problem as 25.4 + 9.8. Who is correct? Explain your answer and solve the problem.

Both are correct. The Commutative Property for addition says the order of the addends doesn't matter.

21. 0.84 is 10 times as much as \(\frac{1}{10} \) of

\[\begin{array}{c}
0.84 \\
0.084
\end{array} \]

and

\[\begin{array}{c}
8.4 \\
84
\end{array} \]